论文部分内容阅读
提出了一种用于电力系统短期负荷预报的动态神经网络模型。这种模型同时兼顾了时序法和相关法的特点,将日期特征量,气象特征量及一天的多个有功负荷水平作为神经网络的输入信息,通过对输入信息动态,灵活地处理,利用有监督的学习算法对神经网络进行训练,再预测下一天相应时间点的多个有功负荷,以提高有功日负荷的精度和方法的适应性,为电力系统经济负荷分配提供可靠的依据。