论文部分内容阅读
带有正交约束的矩阵优化问题在材料计算、统计及数据分析等领域中有着广泛的应用.由于正交约束的可行域是Stiefel流形,一直以来流形上的优化方法是求解这一问题的主要方法.近年来,随着实际应用问题所要求的变量规模的扩大,传统的流形优化方法在计算上的劣势显现出来,而一些迭代简单、收敛快的新算法逐渐被提出.通过收缩方法、非收缩可行方法、不可行方法三个类别分别来介绍求解带有正交约束的矩阵优化问题的最新算法.通过分析这些方法的主要特性,以及应用问题的要求,对这类问题算法设计的研究进行了展望.