论文部分内容阅读
为了解决海量交通视频数据的监控和分析问题,本文对Hadoop大数据背景下的交通视频监控技术进行了深入研究,提出了基于交通视频数据的异常检测算法的设计方案,实现了交通数据的实时更新和异常分析,同时针对海量交通监控视频,设计了基于Hadoop组件MapReduce的并行实现算法,并通过浙江省某市的实际交通数据验证算法的有效性和准确性。经过实验证明,本文算法可以有效计算出交通拥堵情况和异常情况,相对于传统方案,本文方案可以聚焦10min范围内的时间粒度对交通情况进行实时分析,相对于传统的分布式计算模型,本