论文部分内容阅读
目的评价人工智能(AI)肺结节辅助诊断系统预测肺亚实性结节(SN)恶性概率的效能。方法将86例接受手术治疗SN患者分为3组:组1为浸润前病变,组2为微浸润腺癌,组3为浸润性腺癌。将术前胸部CT数据导入AI肺结节识别软件,记录其自动测量的SN的CT值、体积及恶性概率预测值。比较3组SN在CT平扫、增强动脉期及延迟期中的CT值、体积及恶性概率预测值,并对各组进行平扫与增强后配对样本检验。分析根据各期CT对各组SN恶性概率预测值与CT值及体积的相关性。结果共纳入88个SN,组1、组2和组3分别含27、28及33