论文部分内容阅读
医学CT图像的超分辨率重构研究具有较大的实用价值。针对CT图像由于设备等原因存在的细节模糊,边缘不清晰、感知质量差等问题,提出一种多次上下采样的深度方格卷积网络。通过上下采样的二维结构,拓宽网络宽度与深度,增强不同尺度信息的深层依赖关系,促进不同尺度下的信息交互,从而充分利用原始图像信息重构出更多的高分辨率细节信息。采用全局深度联结与局部残差相结合的方式,将浅层网络信息反馈至深层网络,实现全局网络信息共享,提高训练时浅层网络特征映射在深层网络中的利用率,突出深度网络训练优势。实验结果表明,通过峰值信