论文部分内容阅读
The performance of UWB (ultrawide bandwidth) radio systems under an impulsive noise environment is first investigated. In the analysis, the Middleton’s class A model is used as a model of the impulsive noise. At first, the statistical characteristics of the inphase and quadrature components of the impulsive noise are investigated, and it is proved that unlike Gaussian noise, these components are dependent especially on the impulsive noise with small impulsive indices. The probability that the high amplitude noise is emitted in the inphase component which becomes firstly larger and then smaller for the larger quadrature component of impulsive noise is presented. Next, the performance of conventional UWB radio systems designed for the Gaussian noise under the impulsive noise is evaluated and numerical results show that the performance of the conventional UWB radio systems is much degraded by the effect of the impulsive noise. Using the dependence between the inphase and quadrature components of the impulsive noise, a novel UWB receiver designed for impulsive noise is proposed and the performance improvement achieved by the receiver is evaluated. Numerical results show that the performance of UWB radio systems is much improved by employing the proposed receiver.
The performance of UWB (ultrawide bandwidth) radio systems under an impulsive noise environment is first investigated. In the analysis, the Middleton’s class A model is used as a model of the impulsive noise. At first, the statistical characteristics of the inphase and quadrature components of the impulsive noise are investigated, and it is proved that unlike Gaussian noise, these components are dependent especially on the impulsive noise with small impulsive indices. The probability that the high amplitude noise is emitted in the inphase component for the larger quadrature component of impulsive noise is presented. Next, the performance of conventional UWB radio systems designed for the Gaussian noise under the impulsive noise is evaluated and numerical results show that the performance of the conventional uWB radio systems is much degraded by the effect of the impulsive noise. Using the dependence between the inphase and quadrature compon ents of the impulsive noise, a novel UWB receiver designed for impulsive noise is proposed and the performance improvement achieved by the receiver is evaluated.