[!--temp.top--]

深度随机森林在离网预测中的应用

被引量 : 0次 | 上传用户:lss81
'; } ?>
【作 者】
'; foreach($pd_record as $writer){ $str .= ''.$writer. ' '; } $str = trim($str,',').'
'; } echo $str; ?>
【机 构】
'.$navinfor[author_org].'
'; } ?>
【出 处】
'.$navinfor[befrom].'
'; } ?>
【发表日期】
'.$navinfor[year].'年'.$navinfor[issue_num].'期
'; } ?>
【关键词】
'; foreach($pd_record as $keyboard){ $str .= ''.$keyboard. ' '; } $str = trim($str,',').'
'; } echo $str; ?>
【基金项目】
'.$navinfor[fund_info].'
'; } ?>
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在电信运营商领域,离网预测模型是企业决策者用来发现潜在离网用户(即停用运营商服务)的主要手段。目前离网预测模型都是基于逻辑回归、决策树、神经网络及随机森林等浅层机器学习算法,但是在大数据的背景下,这些浅层算法在预测问题上很难取得更高的精度。因此,提出了一种新型的深层结构模型——深度随机森林,通过将传统浅层随机森林堆积成深层结构模型,获得更高的预测精度。在运营商真实数据上进行了大量实验,结果证明深层随机森林模型比传统浅层机器学习算法在离网预测问题上可以得到更好的效果。同时,增大训练数据量可以进一步提升深层随
其他文献
[e:loop={"SELECT * FROM phome_ecms_lunwen WHERE id BETWEEN $js AND $ks ",0,24,0}]
'.$keyboard. ''; } $str = trim($str,',').'
'; } echo $str; ?>
[/e:loop]