Editorial: Welcome to Advanced Photonics

来源 :AdvancedPhotonics | 被引量 : 0次 | 上传用户:jxhxf0
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读

Welcome to a new home for your best optics and photonics research. Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. Photonics underpins the most impactful technologies of the twenty-first century, contributing and defining such diverse areas as information processing, internet and communications, imaging, sensing and security, healthcare and medicine, and quantum technology, among others. We will publish top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental optics and photonics research in all areas, and novel applications with considerable potential. We most welcome interdisciplinary research articles demonstrating how photonics advances material science, biology, chemistry, and other disciplines.

其他文献
期刊
期刊
从理论上分析了Bragg型声光双稳系统的线性稳定性及调制效应.由系统的动力学方程、稳态方程出发,给出了出现双稳态的参数范围,并计算出稳区与非稳区的边界.对输入光作简谐调制时,预言了稳区输出光的共振效应和共振峰的偏移以及非稳区的频率锁定等现象.
Flat-topped beam theoretical model and unified theory of coherence and polarization of light are used as the bases in examining aberrated, partially coherent, electromagnetic, square, flat-topped pulsed beams focused by a thin lens. This study demonstrate
铷原子吸收线宽很窄,通过充入定量缓冲气体,可以加宽铷原子的泵浦吸收线宽,从而可以提高铷原子对泵浦光的吸收效率。通过计算模拟,找到入射泵浦光谱宽、入射泵浦强度和缓冲气体压力之间的对应关系,找到最佳的实验工作条件,最终实现铷原子对离泵浦中心频率一定范围内的泵浦吸收效率很高,同时保证在泵浦谱宽范围内的总泵浦吸收效率也很高。模拟结果显示:随着缓冲气体压力的增大,铷原子吸收线宽不断增加,但是泵浦光的总吸收效率下降的并不明显。
InGaAs/InP雪崩二极管(APD)可用于探测光通讯波段的单光子。APD工作于门模盖革模式时,单个光子引起的雪崩电流信号通常淹没在电容瞬时充放电脉冲中,光电流信号提取困难。本文通过调整实验参数和APD的寄生电容,使雪崩信号与放电脉冲在时域上有效叠加,并由高速比较器将光电流信号直接甄别出来。本文设计的基于InGaAs/InP APD的单光子探测系统,运行稳定,方法简单可靠,说明这种利用APD的电容特性提取单光子信号是一种有效的方法。
期刊
期刊
期刊
利用879 nm新型激光二极管(LD)抽运Nd:GdVO4晶体,在室温下实现了4F3/2→4I9/2准三能级激光谱线跃迁。对掺杂原子数分数0.2%,3 mm×3 mm×3.8 mm的晶棒,在抽运功率为33 W时,获得912 nm最大输出2.5 W,斜率效率11%,相应的对吸收抽运功率的斜率效率达38%;对掺杂原子数分数0.2%,3 mm×3 mm×5 mm的晶棒,在抽运功率为33 W时,获得912 nm最大输出功率3.0 W,斜率效率16%,相应的对吸收抽运功率的斜率效率达45%。在腔内插入声光(AO)Q