论文部分内容阅读
As an important component of FLUXNET, Asia is increasingly becoming the hotspot in global carbon research for its vast territory, complex climate type and vegetation diversity. The present three regional flux observation networks in Asia (i.e. AsiaFlux, KoFlux and ChinaFLUX)have 54 flux observation sites altogether, covering tropic rainforest, evergreen broad-leaved forest, broad-leaved and coniferous mixed forest, shrubland, grassland, alpine meadow and cropland ecosystems with a latitudinal distribution from 2°N to 63°N. Long-term and continuous fluxes of carbon dioxide, water vapor and energy between the biosphere and atmosphere are mainly measured with eddy covariance technique to (1) quantify and compare the carbon, water and energy budgets across diverse ecosystems; (2) quantify the environmental and biotic controlling mechanism on ecosystem carbon, water and energy fluxes; (3) validate the soil-vegetation-atmosphere model; and (4) serve the integrated study of terrestrial ecosystem carbon and water cycle. Over the last decades, great advancements have been made in the theory and technology of flux measurement, ecosystem flux patterns, simulation and scale conversion by Asian flux community. The establishment of ChinaFLUX has greatly filled the gap of flux observation and research in Eurasia. To further promote the flux measurement and research,accelerate data sharing and improve the data quality, it is necessary to present a methodological system of flux estimation and evaluation over complex terrain and to develop the integrated research that combines the flux measurement, stable isotope measurement, remote sensing observation and GIS technique. It also requires the establishment of the Joint Committee of Asian Flux Network in the Asia-Pacific region in order to promote the cooperation and communication of ideas and data by supporting project scientists, workshops and visiting scientists.