基于质心法的车联网目标跟踪方法与应用

来源 :计算机科学 | 被引量 : 0次 | 上传用户:xiaoc009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
车辆目标跟踪是实现车联网不可或缺的一环,旨在获取车辆的动态信息,以提高交通运行效率。其核心是对大量监控探头采集的视频图像进行分析处理,实现车辆的实时检测与跟踪。为了进一步提高目标检测效率,降低硬件成本,文中提出了基于二帧差分法的前景检测方法,以及基于质心法的车辆轮廓检测与跟踪方法。基于OpenCV3.4.1和VS2017进行验证实验和仿真测试,结果表明,该算法对车辆跟踪的精确率达到89.1%,平均处理耗时42.63 ms,具有较好的实时性和鲁棒性,可在车联网嵌入式设备上进行部署和应用。
其他文献
随着大规模时尚数据集的公开,基于深度学习的服装图像分类得到快速发展。然而,目前服装图像分类多数是在同一件服装具有单张的、正面或接近正面的图像的场景下进行分类,这导致了当视角发生变化时常出现服装图像误分类的情况,现实中服装具有的形变大、遮挡严重等特性进一步加剧了该问题。基于上述问题,提出了一种基于流形结构神经网络的服装图像集分类方法,利用流形空间更好地表示服装的内部结构特征。该方法选用多视角度服装图
期刊