论文部分内容阅读
高压输电线路定期的巡逻检修是保障其安全可靠运行的重要手段。相比于传统的人工巡检,利用无人驾驶飞机搭载摄像机航拍的巡检方式具有速度快、人力成本低、人员风险小等优势。为了从海量的巡检图像中自动筛选出杆塔可能存在故障的图像,提出了一种融合多源信息的电力杆塔检测框架模型,主要包括摄像机标定、杆塔模型投影变换、杆塔模型聚类分析以及特征提取和匹配4个部分,并在实际的杆塔图像上进行了测试。结果表明,应用检测框架模型处理能够自动检测出图像中杆塔的精确位置,并判断杆塔是否存在杆件丢失等异常状态,验证了模型的有效性。