论文部分内容阅读
将改进的粒子群(PSO)算法应用到饱和电力负荷预测巾,通过与Logistic,时间序列预测模型相结合,对Logistic曲线函数进行优化参数求解。建立了基于该优化算法的Logistic时间序列饱和负荷预测模型,利用某地区电网历史数据进行Logisticn时间序列分析。仿真结果表明,该改进算法收敛速度快,全局寻优能力强,克服了传统PSO算法局部搜索能力较差、容易陷入局部最优的缺点。利用它得到的Logistic拟合曲线,相对于传统PSO算法和Marquardt迭代算法的拟合结果,精度有明娃的提高,说明该模型能