论文部分内容阅读
为补偿光学4f系统灰度误差,提出基于直方图匹配和径向基函数(RBF)神经网络的灰度误差补偿方法。首先利用径向基函数神经网络拟合经光学4f系统输出图像的直方图与对应输入图像的直方图之间的非线性变换,得到输出图像与输入图像的直方图匹配变换曲线的最优估计;再依据直方图匹配曲线的最优估计对经光学4f系统的输出图像进行直方图匹配,得到灰度误差补偿后的图像。利用实际的光学4f系统进行光学实验,灰度误差补偿后图像的信噪比平均提高了2.96dB,视觉效果明显改善。实验结果表明,该方法能有效补偿光学4f系统灰度误差,提高基