论文部分内容阅读
Turbulent flow in a 3-D blade passage of a Francis hydro turbine was simulated with the Large Eddy Simulation (LES) to investigate the spatial and temporal distributions of the turbulence when strongly distorted wakes in the inflow sweep over the passage. In a suitable consideration of the energy exchanging mechanism between the large and small scales in the complicated passage with a strong 3-D curvature,one-coefficient dynamic Sub-Grid-Scale (SGS) stress model was used in this article. The simulations show that the strong wakes in the inflow lead to a flow separation at the leading zone of the passage,and to form a primary vortex in the span-wise direction. The primary span-wise vortex evolves and splits into smaller vortex pairs due to the constraint of no-slip wall condition,which triggers losing stability of the flow in the passage. The computed pressures on the pressure and suction sides agree with the measured data for a working test turbine model.
Turbulent flow in a 3-D blade passage of a Francis hydro turbine was simulated with the Large Eddy Simulation (LES) to investigate the spatial and temporal distributions of the turbulence when strongly distorted wakes in the inflow sweep over the passage. of the energy exchanging mechanism between the large and small scales in the complicated passage with a strong 3-D curvature, one-coefficient dynamic Sub-Grid-Scale (SGS) stress model was used in this article. The simulations show that the strong wakes the primary span-wise vortex evolves and splits into smaller vortex pairs due to the constraint of no-slip wall condition, which triggers losing stability of the flow in the passage.