论文部分内容阅读
针对标准匹配追踪(MP)算法在寻找最佳原子时计算量大的问题,提出一种基于免疫匹配追踪(IA—MP)的语音稀疏分解算法。该算法采用免疫克隆优化机制搜索最佳原子,利用抗体的种群规模控制冗余字典的大小,选择实数交叉与非均匀变异方法保证字典的完备性。仿真实验结果表明,与标准MP算法和遗传匹配算法相比,IA-MP算法可明显降低匹配追踪的计算量,算法性能较稳定,利用该算法分解后的稀疏信号具有较高的重构精度。