论文部分内容阅读
为了提高潮汐水位的实时预测精度,本文提出了一种基于灰色的数据处理群模块化(Grey-GMDH)潮汐水位实时预测模型。模块化将潮汐分解为两部分:由天体引潮力形成的天文潮部分和由各种天气以及环境因素引起非天文潮部分。使用Grey-GMDH模型和调和分析模型分别对潮汐的非天文潮和天文潮部分进行仿真预测,然后将两部分的预测结果综合形成最终的潮汐预测值。并选用San Diego港口的实测潮汐值数据进行实时预报的仿真实验,实验结果验证了该方法的可行性与有效性并取得了良好的仿真结果,验证了模型有着较高的预报精度。