Harnack不等式在Markov过程长时间行为研究中的应用

来源 :中国科学:数学 | 被引量 : 1次 | 上传用户:hhj9290
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文使用Markov半群的无穷维Harnack不等式刻画Markov过程的长时间行为,建立可加泛函的极限定理,简化和放松了原有的条件.所获得的一般结果被应用于随机Hamilton系统和半线性随机偏微分方程,对于一类退化的扩散过程和无穷维扩散过程建立了所需的Harnack不等式,得到了相应的极限定理.
其他文献
本文的目的是,依照经典的L′evy-Khinchin三参数表示的精神,论述在Lie群作用下不变的Markov过程的表示理论.对不变Markov过程,按其一般性,我们将在三个层面中进行讨论.首先是Lie群里平移不变的Markov过程,然后是一般流形中在可迁群作用下不变的Markov过程.这两类过程都称L′evy过程,具有三参数表示.第三类过程为在不可迁群作用下不变的Markov过程.在一定条件下,这
期刊
假设X={X_t, t≥0; P_μ}是局部紧可分距离空间E上的上临界超过程,Ф_0是X的均值半群的生成元的与第一特征值λ_0对应的正特征函数,则M_t:=e~(-λ_0t)是非负鞅.令M_∞是M_t的极限,则M_∞是非退化的当且仅当L log L条件成立.当L log L条件不一定成立时,最近, Ren等(2017)证明了存在定义在[0,∞)上的非负函数γ_t及非退化随机变量W使得对任意E上非零
期刊
磁流体动力学方程组被广泛应用于受控核聚变装置托卡马克、天体物理、磁流体发电等问题的研究中,其往往具有非线性、多尺度、多物理等特征,大规模数值难度较大.目前国际上对不可压缩流体问题的大规模数值求解主要采用全隐或半隐方法,但都是在同构的超级计算机而不是目前主流的异构众核系统上进行计算.论文面向国产神威"太湖之光"超级计算机,开展面向磁流体动力学方程组的异构众核全隐求解器研究.针对Newton-Kryl
期刊
由于线缆字符图像存在重叠域小、重叠区在边缘带、光照分布不均等问题,目前的图像拼接方法不能快速、有效拼接两幅图像.为此,本文提出了一种加速后的拼接新方法来解决线缆字符图像的拼接问题.首先利用边缘检测从图像中分割出字符区域.再基于光照分布对字符区域进行分块,利用大津法处理包含字符的图像块,得到线缆字符区域二值化图像.接着在区域增长的图像配准算法的基础上,加入降采样及分级步长的方法,快速得到线缆字符区域
期刊
本文目标是探讨统计物理的核心课题—相变现象.为此,需要发展已有的或寻找新的数学工具.重点在于刻画各种稳定性的速度.主要内容有耦合与距离方法及遍历性蕴含关系图,各种遍历性的显式判断标准与一种格子量子场模型,一维情形对偶变分公式、统一基本估计与Hardy不等式.
期刊
Poisson-Dirichlet分布是定义在无穷维单纯形上的概率.它刻画了一个取值为离散概率的随机变量的分布.与Poisson-Dirichlet分布密切相关的随机测度包括GEM (Griffiths-Engen-McCloskey)分布、Dirichlet过程、两参数Dirichlet过程和两参数Poisson-Dirichlet分布等.构造与这些分布相应的测度值过程是近些年比较活跃的研究课题
期刊
正则Dirichlet形式的正则子空间问题,即存在性及其刻画等问题,是作者关注近20年的问题,该问题来自第二作者对于Markov过程的Killing变换的Dirichlet形式刻画问题的研究,这个问题是Dirichlet形式理论的一个基本问题,在最近10年中取得了一点进展.本文将主要叙述问题及其背景,并介绍围绕该问题得到的一些结果与遗留的问题.
期刊
本文考虑一类连续状态非线性分枝过程.直观上,这是一类带竞争且分枝速率与状态相依的连续状态分枝过程.我们可以用由Brown运动和Poisson随机测度驱动的随机微分方程的解来构造该类过程.本文的主要结果是构造一列离散状态Markov链,并在较弱的条件下,通过胎紧性结论以及构造无穷维乘积空间上的收敛序列的方法证明其在轨道空间上弱收敛于上述连续状态的非线性分枝过程.
期刊
通过求解由轨道空间上的Poisson随机测度驱动的随机积分方程,对于满足Yamada-Watanabe型条件的移民速度函数,本文给出了带相依移民连续状态分枝过程的构造.此构造改进了Dawson和Li (2003)、Fu和Li (2004)和Li (2011)等在Lipschitz条件下的结果.
期刊
本文的研究目标是离散观测下正倒向随机微分方程中未知参数的估计及其性质.作为第一步,本文考虑一个线性模型.本文先导出两个状态过程的关系式,进而找到离散观测数据的似然函数.最后详细讨论最大似然估计量的相合性和渐近正态性.
期刊