论文部分内容阅读
最近,在人脸等图像识别领域,用于抽取非线性特征的核方法如核Fisher鉴别分析(KFDA)已经取得成功并得到了广泛应用,但现有的核方法都存在这样的问题,即构造特征空间中的核矩阵所耗费的计算量非常大.而且,抽取得到的单类特征往往不能获得到令人满意的识别结果.提出了一种用于人脸识别的非线性鉴别特征融合方法,即首先利用小波变换和奇异值分解对原始输入样本进行降维变换,抽取同一样本空间的两类特征,然后利用复向量将这两类特征组合在一起,构成一复特征向量空间,最后在该空间中进行最优鉴别特征抽取.在ORL 标准人脸