论文部分内容阅读
针对雷达目标高分辨距离像(HRRP)存在大量的信息冗余,易受到噪声的污染,可分性较差等问题,本文利用核方法解决非线性问题的优点,提出了基于核主分量分析(KPCA)的雷达目标HRRP特征提取与基于支持矢量数据描述(SVDD)的雷达多目标模糊识别方法。在特征提取过程中,利用KPCA对雷达目标HRRP做降噪与降维处理,使得HRRP降低噪声和姿态角的敏感性;在识别过程中,首先在特征空间求得包含每一类目标训练样本的最小超球体,然后根据各个测试样本到最小超球体球面的距离构造属于各个类别的模糊隶属度,根据模糊隶属度的大