论文部分内容阅读
该文针对K平面聚类算法KPC(K-Plane Clustering)对噪声点敏感的缺陷,通过引入隶属度约束函数,推导出鲁棒的改进分割K平面聚类算法IFP-KPC(Improved Fuzzy Partitions for K-Plane Clustering),并利用Voronoi距离对IFP-KPC算法的鲁棒性进行了合理解释。实验结果表明IFP-KPC算法较之于KPC算法具有更好的聚类效果。