论文部分内容阅读
Changes in activated areas of the brain during ankle active dorsiflexion and ankle active plantar flexion were observed in six healthy subjects using functional magnetic resonance imaging. Excited areas of ankle active dorsiflexion involved the bilateral primary motor area and the primary somatosensory area, as well as the bilateral supplementary sensory area, the primary visual area, the right second visual area, and the vermis of cerebellum. Excited areas of ankle active plantar flexion included the ipsilateral supplementary motor area, the limbic system, and the contralateral corpus striatum. Fine movements of the cerebral cortex control the function of the ankle dorsiflexion to a larger extent than ankle plate flexion, and the function of ankle plate flexion is more controlled by the subcortical area.
Changes in activated areas of the brain during ankle active dorsiflexion and ankle active plantar flexion were observed in six healthy subjects using functional magnetic resonance imaging. Excited areas of ankle active dorsiflexion involved the bilateral primary motor area and the primary somatosensory area, as well as the the supplementary visual area, the primary visual area, the right second visual area, and the vermis of cerebellum. Excited areas of an active active plantar flexion included the ipsilateral supplementary motor area, the limbic system, and the contralateral corpus striatum. Fine movements of the cerebral cortex control the function of the ankle dorsiflexion to a larger extent than ankle plate flexion, and the function of ankle plate flexion is more controlled by the subcortical area.