论文部分内容阅读
为了提高蚁群聚类LF算法的聚类效果,在对基本LF算法改进的基础上,算法迭代过程中又进一步采用邻域线性增大和线性减小两种不同的方法,通过UCI数据集Iris和wine数据的验证,使用FM作为聚类效果的评判标准,发现采用邻域线性递减的方法在两种数据集上运行的结果都优于邻域递增和邻域保持不变的情形。邻域递减策略使算法在运行初期能够对待聚类数据粗略的分类,随着邻域的减小,蚁群对数据分类的粒度逐渐细化,算法迭代结束,达到最佳的聚类结果。