【摘 要】
:
涡动相关法作为直接观测湍流运动的方法,是研究潜热通量和CO2通量的重要手段.本团队基于可调谐半导体激光吸收光谱技术研制了激光气体分析仪,用于涡动相关法的海气通量分析.选用7181 cm-1处的H2O吸收谱线和4990 cm-1处的CO2吸收谱线,利用信号采集处理技术及导数谱浓度反演方法实现100 Hz时间分辨率的目标气体浓度的计算,并根据计算结果评估得到H2O分析仪的检测限约为8.17×10-6,CO2分析仪的检测限约为0.40×10-6,时间分辨率为100 Hz.将集成的气体分析仪安装在烟台国家卫星海洋
【机 构】
:
中国科学院合肥物质科学研究院,安徽光学精密机械研究所,安徽合肥230031;中国科学技术大学,安徽合肥230026;中国科学院合肥物质科学研究院,安徽光学精密机械研究所,安徽合肥230031;自然资源
论文部分内容阅读
涡动相关法作为直接观测湍流运动的方法,是研究潜热通量和CO2通量的重要手段.本团队基于可调谐半导体激光吸收光谱技术研制了激光气体分析仪,用于涡动相关法的海气通量分析.选用7181 cm-1处的H2O吸收谱线和4990 cm-1处的CO2吸收谱线,利用信号采集处理技术及导数谱浓度反演方法实现100 Hz时间分辨率的目标气体浓度的计算,并根据计算结果评估得到H2O分析仪的检测限约为8.17×10-6,CO2分析仪的检测限约为0.40×10-6,时间分辨率为100 Hz.将集成的气体分析仪安装在烟台国家卫星海洋定标海上平台上进行真实的海气通量探测,并将探测结果与LICOR7500-H2O/CO2分析仪的测量结果进行了对比.从实验结果看,所研制的激光气体分析仪具有更高的时间分辨率,更易捕捉湍流运动的微小变化,具有广阔的应用前景.
其他文献
超连续谱光源具有光谱宽、亮度高、空间相干性好等优点,在光谱学、生物医学、环境科学以及光电对抗等领域都有着广泛的应用前景.目前产生近红外超连续谱光源的方案主要有两种:一种是利用非线性光纤放大器产生,另外一种是利用脉冲或连续光纤激光器泵浦光子晶体光纤产生.但是,两种方案都存在一定的不足,利用非线性光纤放大器产生超连续谱方案中产生超连续谱的阈值相对较大,且光谱平坦度相对较差;利用脉冲或连续光纤激光器泵浦光子晶体光纤方案中系统结构一般比较复杂,且高峰值功率或高平均功率的光纤激光器价格昂贵,所用光子晶体光纤的长度也
光参量啁啾脉冲放大器(OPCPA)在实现高功率、大能量、光学周期量级的超短激光脉冲输出方面极具优势.对具有高脉冲重复频率(≥1 kHz)的OPCPA系统展开研究讨论,全面介绍OPCPA系统的组成;针对不同波段的OPCPA系统,对泵浦源、前端、光参量放大级和压缩器等关键模块分别进行对比和讨论,对限制OPCPA系统性能提升的因素进行分析;最后总结不同输出波长的高重复频率OPCPA系统的研究现状,并对未来的发展方向进行展望.
在过去的二十多年里,台式飞秒真空紫外(VUV)激光光源技术经历了快速发展,与泵浦-探测技术相结合,在超快光化学领域的应用越来越得到重视.本文介绍了目前搭建台式飞秒VUV激光光源最常用的四波混频方法,并对空芯光纤中和光丝中的四波混频的发展做了较为详细的介绍和梳理.
近些年,法国Amplitude公司提出了“吉赫兹(GHz)革命”的口号,主要指发展重复频率在GHz量级的超短脉冲激光光源,并将其应用于工业加工、精密测量和生物成像等方面.深紫外激光器具有波长短、分辨率高、光子能量高的特点,因而在芯片缺陷检测、光电子能谱实验等方面具有重要应用,但目前已有的深紫外激光器的重复频率主要集中在千赫兹(kHz)和兆赫兹(MHz)量级,在GHz重复频率方面的研究极少,这大大限制了深紫外激光器在上述方面的应用.因此,针对上述研究现状,对高重复频率超短脉冲激光器的产生及频率变换技术的发展
近年来,二维二硒化铂(PtSe2)由于其独特的性质,在锁模激光器、光电探测器、太阳能电池等领域均表现出巨大的应用潜力,引起了科研人员的广泛兴趣.本实验使用化学气相沉积法,在蓝宝石衬底上生长出不同层数的PtSe2薄膜.使用原子力显微镜和拉曼光谱仪对样品的表面形貌和拉曼振动模式进行研究.吸收光谱表明,PtSe2具有随着层数增加而减小的带隙.使用椭圆偏振光谱仪对样品的光学常数进行表征,结果表明,PtSe2的光学常数与厚度有明显的相关性.使用变温椭偏光谱仪分析温度对PtSe2光学常数的影响,并得到不同波长下的热光
自石墨烯发现以来,新型单元素纳米材料以其新奇的光电特性备受关注.特别是近几年来,第五主族元素纳米材料(砷烯、锑烯、铋烯)更是激发了研究人员的极大兴趣.作为一种过渡金属,铋纳米材料一直是材料和光学研究领域的热点之一,在电子器件、光电器件和非线性光学等领域的应用中表现出巨大的潜力和良好的前景.首先,着重从制备、表征和非线性光学特性研究等方面介绍铋纳米材料的相关理论和实验研究工作.接着,总结铋纳米材料的非线性光学性质及其光子学应用规律.最后,对铋纳米材料的发展前景和趋势进行展望和分析.
四元锂-硫化合物具有较高的非线性光学(NLO)系数以及较宽的带隙,是一种具有较高应用潜力的非线性光学晶体.较高的热导率是非线性光学晶体综合性能的重要保障,可以保证非线性光学器件在实际应用中正常运行.然而,由于目前合成的四元锂-硫化合物的晶体尺寸通常较小,实验中难以测量其热导率,因此,采用第一性原理计算方法研究四元锂-硫化合物Li2BaSnS4的热导率,并通过与类似的三元硫化合物LiGaS2进行对比,探讨其晶格热导率的微观来源.研究发现,Li2BaSnS4的晶格热导率较三元硫化合物LiGaS2低,一方面是因
1970年,山东大学(以下简称“山大”)对接国家战略需求设立了光学系,这标志着山大光学学科的正式成立.以邓从豪先生、蒋民华先生、陈继述先生、王应素先生和胡燮荣先生为代表的老一辈杰出科学家、教育家共同努力,开创了山大光学学科二十世纪七八十年代的辉煌,为国家需求和光学发展作出了卓越贡献,创立了“山大光学”品牌.50年来,山大光学学科培养了众多杰出人才,造就了大批学术名家、兴业英才,践行了山东大学“为天下储人才,为国家图富强”的办学宗旨.在社会各界的关心、支持和帮助下,历代山大光学人正将“山大光学”品牌不断发扬
随着云计算和数据中心的高速发展,片上集成光互连和光处理凭借在集成度、速度、带宽及功耗等方面的独特优势,成为突破传统电子瓶颈的关键技术.同时,光子具有频率、偏振、时间、复振幅及空间结构等多个物理维度,可发展为多维混合复用技术,进一步提升光互连和光处理的带宽.结合光场多个物理维度资源,分别对片上集成多维光互连和光处理的关键技术进行了回顾,并对其未来发展趋势进行总结和展望.
空间目标的探测、识别、预警、拦截以及相关海量信息的快速安全传输是目前重要和紧迫的研究方向.结合偏振、光谱等光学技术的多维度探测可并行获取目标形状、材质、位置等信息,从而有效增加空间目标信息维度和提升准确度;同时借助空间激光通信,将以上海量信息快速安全地传输给在轨卫星和管理部门等,可为目标进一步的处置及时提供决策依据.首先梳理空间目标探测与激光通信的国内外发展现状,分析主要难点,总结相关技术的原理、特点与应用;然后介绍本团队近年来在空间目标多维度(偏振、光谱、强度)探测和激光通信方面的研究进展,包括复杂背景