论文部分内容阅读
人脸属性迁移作为计算机视觉领域的一个研究热点,对于数字娱乐制作、辅助人脸识别等领域有着重要的意义。现有的算法存在着生成图像模糊、转移属性无关区域变化等问题。针对这些不足,提出一种基于视觉注意力生成对抗网络的人脸属性迁移模型。生成器为减小属性无关区域的变化,引入视觉注意力分别输出RGB图像和注意力图像,并通过一定的融合方式得到属性迁移结果。采用多尺度判别器保持高维特征映射的细节。在约束中加入循环一致性损失和注意力图像损失,保持人脸身份信息,并专注属性相关区域的迁移。实验证明,该模型能够减少属性无关区域