论文部分内容阅读
提高干旱预测精度能为流域干旱应对及风险防范提供可靠数据支撑,构建比选合适的干旱模型是当前研究的热点。研究以4个时间尺度(3、6、9、12月)标准化降水指数(SPI)为表征指标,利用小波神经网络(WNN)、支持向量回归(SVR)、随机森林(RF)三种机器学习算法分别构建了海河北系干旱预测模型,利用Kendall、K-S、MAE三种检验方法判定模型表现及其稳定性。研究表明:(1)WNN、SVR模型呈现结果在不同时间尺度SPI存在差异,WNN最适合12个月尺度SPI干旱预测;SVR最适合6个月尺度SPI干