论文部分内容阅读
提出了一个微粒群优化算法(autoPSO)自动聚类高维数据。autoPSO优化了Davies-Bouldin(DB)有效性函数,并将聚类问题转化为一个界约束的连续函数的优化问题。用一个实数矩阵和一个二进制向量来表示微粒,使得同一迭代中能够表示具有不同聚类数目的划分;并且,在二进制向量的控制下指导相关联的实数矩阵交叉操作,保持算法良好的种群多样性,避免算法早熟收敛。通过高维模拟数据集的实验结果表明,本文算法不需要预设聚类数目k,能够自动正确识别高维数据的聚类。