论文部分内容阅读
针对现有目标检测算法难以在果园复杂环境下对苹果花朵生长状态进行高精度检测的问题,提出一种改进YOLOv5的苹果花朵生长状态检测方法,对花蕾、半开、全开、凋落四类苹果树开花期花朵生长状态进行检测。该方法首先对跨阶段局部网络模块进行改进,并调整模块数量,结合协同注意力模块设计主干网络,提高模型检测性能并减少参数。其次,结合新的检测尺度与基于拆分的卷积运算设计特征融合网络,提升网络特征融合能力,最后选用CIoU作为边框回归的损失函数实现高精度的定位。将所改进算法与原始YOLOv5算法在自建数据集上进行对比