论文部分内容阅读
K-means算法是一种基于划分的方法,该算法对初始聚类中心的选取依赖性极大,初始中心值的不同导致聚类效果不稳定.为此,本文利用几何概率的思想,认为每个数据点都是等概率的存在于数据集,通过计算每个数据点的点概率值,结合距离因素,选择K个点作为初始聚类中心.实验证明,改进后的K-means算法聚类效果更好.