论文部分内容阅读
摘要:为保证开挖临边高压钢塔、基坑、以及道路安全,对施工方案进行了多次讨论、对比;并通过结构、岩土、电力等方面的专家对该施工方案的论证。 关键词:支护;加固;质量控制措
目前世界工程建设向空中、地下发展成为一种必然趋势。因此,建筑施工过程中基坑支护与加固工程的控制非常重要。
一、某工程情况介绍
某施工工程如下:施工区域临近主楼18层主体施工已完成,主楼东侧有7.5米双向地库汽车坡道出入口;由于前期施工场地相当狭窄,开挖对东侧高压电线钢塔安全影响未知、且加固方案未定等问题的限制,该部分坡道以及部分地库长度32米未进行开挖;由于主楼开挖对该部分地质情况十分熟悉,从上到下依次,现场表层1.5-2.0米为垃圾回填土,1.5米厚粉土层,0.5米粘土层,以下为粉土层,在车库出入口东侧为高压入地电缆盘曲部分,电缆盘曲向西3.0米向东连接22米、25米2座高压钢塔;地库及坡道开挖深度在1-6米,钢塔处开挖深度4米左右;坡道底部为地库,该部分深度6米;在开挖4-6米范围东侧为已建成小区道路、地库出入口,该路面标高低于本工程开挖面1.2米,道路下走有电缆、排水管;且开挖面紧邻隔壁围墙,由于该部位特殊、地质且不均匀,土层有夹杂粘土层,遇水容易滑坡,为保证基坑安全以及隔壁围墙、道路安全,主楼开挖时在围墙内侧采用微型桩加钢筋网砼支护形式,但不理想,围墙局部出现较大裂缝,隔壁道路出现轻微变形;对于现在坡道施工,为保证开挖临边高压钢塔、基坑、以及道路安全,对施工方案进行了多次讨论、对比;在钢塔附近埋有110千伏高压电缆,该部位采用土钉支护安全隐患太大,且放坡使基坑外沿向钢塔、电缆靠近,对钢塔结构安全有影响;经过对钢塔结构现状了解,钢塔基础为独立钢筋砼灌注桩,直径2.2米,埋深9米。
二、工程施工过程中的方案选择与分析
通过采用土钉支护或采用13米400微型桩加钢筋网的支护方案的对比,由于钢塔顶部钢绞线相拉,钢塔基础受力大小无法预计,仅靠基坑土体受力计算显然不符合实际,在结构安全和施工安全方面都没有把握,由于该部位较为特殊,一旦影响电线高塔的安全对社会影响较大,施工工艺选择不妥会造成施工安全事故;經多方面考虑、推敲和借鉴其他类似项目,在保证不影响高塔使用安全和坡道施工安全的前提下,设计安全系数适当提高;根据JGJ120-99和GB50202-2002的相关规定,基坑侧壁钢塔处安全等级1级,其他部位为3级;设计类型采用悬臂桩结构,用北京理正软件对支护结构抗拉、内部稳定、外部稳定性进行设计,安全系数均满足规范要求;并通过结构、岩土、电力等方面的专家对该施工方案的论证。
三、支护与加固方案的主要内容介绍
1.采用直径600mm的钻孔灌注桩,桩入土深度自地表以下 12米,有效桩长11米,嵌固深度6.5-9.5米,桩身采用C30砼,主筋10根HRB400级16钢筋均匀分布,箍筋¢8@150,加强箍筋¢14@2000,桩间距在电线杆处为1.0米,其它地段为1.2米;冠梁500*800,10根HRB400级18,箍筋、拉钩¢8@200,采用C30砼。
2. 坡道边坡、钢塔变形监测。
四、施工现场的组织管理
由于现场狭窄,大型机械无法进入施工,且施工区域地下、地上均有高压电缆;对砼灌注桩成孔、钢筋笼安装、砼浇注较为困难;经多方面考虑、讨论决定按照以下组织实施:
①在施工前详细了解高压地下电缆走向、埋深以及接电线的辐射范围;
②砼灌注桩放线:为了尽最大可能远离高压地下电缆,桩位紧靠车库剪力墙外皮;
③由于打桩位置狭小无法使用大型机械进行砼桩施工,采用人工机械洛阳铲成孔工艺,机械选用1T卷扬机配三木塔、活底吊桶、双轮手推车等。
④钢筋笼加工:由于钢筋笼11米,钢筋长度9米,需接长2米,计划采用双面焊接工艺,用25吨吊车在地库顶安装,但最北侧4-5根钢筋笼受1#楼主楼位置影响,无法使用吊车,该部位钢筋主筋连接采用直螺纹一级连接,接头钢筋在场外加工后进场;
五、质量控制措施与施工过程
(一)灌注桩放线定位:利用原1#楼主体定位,定出灌注桩中心位置,桩外侧与坡道剪力墙只留30mm空隙。
(二) 机械洛阳铲成孔:
1.采用600mm机械洛阳铲在在桩位中心,利用卷扬机提升及下落进行挖土和垂直运输,闭合抓土,至地面卸土,依次循环成孔,直至达到设计标高。
2 .灌注桩施工部位为前期基坑开挖土钉支护面,在自然地坪以下1.5米和3.0米处有土钉,影响到洛阳铲的施工;有土钉的部位桩径均扩大到700mm,用电焊切除;
(三)钢筋笼制作安装:
1.钢筋原材经现场见证取样试验合格后,方准予加工;
2. 钢筋受力筋按照50mm保护层下料,钢筋主筋搭接采用双面电弧搭接焊,焊头错开50%;个别桩钢筋笼接头采用一级直螺纹连接,接头可在同一个平面上;
3.钢筋保护层用50砂浆垫块每组4块水平对称排列与主筋固定牢固,间距1000mm;
4.钢筋笼吊装:用25T吊车吊装钢筋笼;吊装钢筋笼时要对准孔位,直吊扶稳,缓慢下沉,避免碰撞孔壁,钢筋笼放到位置立即固定;吊车不能直接吊装的钢筋笼,分两段钢筋笼施工,第一段5米,加强箍筋采用¢14@1500,成型后人工放入桩孔,临时固定后,用一级直螺纹机械连接其余主筋钢筋。
(四)砼施工砼采用10-20mm粒径、砼塌落度80-100mm商品砼,灌注前再次校核钢筋笼标高、孔深,检查有无坍孔现象,符合要求后即可开盘灌注。由于砼灌注桩深度较深,混凝土采用溜管用手推车向桩孔内浇筑。灌注开始后应紧凑连续地进行,严禁中途停灌,桩顶以下6米范围采用插入式振动棒进行振捣密实。
从土方开挖到观测变形结束,除开挖当天1个观测点变形最大3mm,(报警值为5毫米/天),其余变形观测为1-2毫米/天,累计最大6mm,远远满足规范30mm要求;对临近建筑、道路沉降观测未发现明显变形。
六、结语
本文从设计与施工的角度对预应力锚索与土钉墙联合支护与加固应用进行了阐述, 并通过本工程的应用分析进行了具体检验:(1) 在基坑的加固工程中应用预应力锚索与土钉墙联合支护与加固是可行的、可靠的;(2) 另外笔者发现土钉设计内力计算时, 锚固浆体受压时的强度提高系数按规范[5] 应取1:1, 但实际工程实践证明, 这往往造成钢筋材料的不必要浪费, 提高系数应该取多少合适尚应通过具体工程的检测数据统计分析后得出, 但应有所提高
参考文献:
[1] 广州地质勘察基础工程公司 华锐大厦基坑支护及加固施工组织方案[R] 广州: 广州地质勘察基础工程公司, 2005.
[2] 叶波, 刘忠臣软弱地层基坑支护工程中复合土钉墙技术的应用[J] 广东公路勘察设计,2003,121(3) :35、38.
目前世界工程建设向空中、地下发展成为一种必然趋势。因此,建筑施工过程中基坑支护与加固工程的控制非常重要。
一、某工程情况介绍
某施工工程如下:施工区域临近主楼18层主体施工已完成,主楼东侧有7.5米双向地库汽车坡道出入口;由于前期施工场地相当狭窄,开挖对东侧高压电线钢塔安全影响未知、且加固方案未定等问题的限制,该部分坡道以及部分地库长度32米未进行开挖;由于主楼开挖对该部分地质情况十分熟悉,从上到下依次,现场表层1.5-2.0米为垃圾回填土,1.5米厚粉土层,0.5米粘土层,以下为粉土层,在车库出入口东侧为高压入地电缆盘曲部分,电缆盘曲向西3.0米向东连接22米、25米2座高压钢塔;地库及坡道开挖深度在1-6米,钢塔处开挖深度4米左右;坡道底部为地库,该部分深度6米;在开挖4-6米范围东侧为已建成小区道路、地库出入口,该路面标高低于本工程开挖面1.2米,道路下走有电缆、排水管;且开挖面紧邻隔壁围墙,由于该部位特殊、地质且不均匀,土层有夹杂粘土层,遇水容易滑坡,为保证基坑安全以及隔壁围墙、道路安全,主楼开挖时在围墙内侧采用微型桩加钢筋网砼支护形式,但不理想,围墙局部出现较大裂缝,隔壁道路出现轻微变形;对于现在坡道施工,为保证开挖临边高压钢塔、基坑、以及道路安全,对施工方案进行了多次讨论、对比;在钢塔附近埋有110千伏高压电缆,该部位采用土钉支护安全隐患太大,且放坡使基坑外沿向钢塔、电缆靠近,对钢塔结构安全有影响;经过对钢塔结构现状了解,钢塔基础为独立钢筋砼灌注桩,直径2.2米,埋深9米。
二、工程施工过程中的方案选择与分析
通过采用土钉支护或采用13米400微型桩加钢筋网的支护方案的对比,由于钢塔顶部钢绞线相拉,钢塔基础受力大小无法预计,仅靠基坑土体受力计算显然不符合实际,在结构安全和施工安全方面都没有把握,由于该部位较为特殊,一旦影响电线高塔的安全对社会影响较大,施工工艺选择不妥会造成施工安全事故;經多方面考虑、推敲和借鉴其他类似项目,在保证不影响高塔使用安全和坡道施工安全的前提下,设计安全系数适当提高;根据JGJ120-99和GB50202-2002的相关规定,基坑侧壁钢塔处安全等级1级,其他部位为3级;设计类型采用悬臂桩结构,用北京理正软件对支护结构抗拉、内部稳定、外部稳定性进行设计,安全系数均满足规范要求;并通过结构、岩土、电力等方面的专家对该施工方案的论证。
三、支护与加固方案的主要内容介绍
1.采用直径600mm的钻孔灌注桩,桩入土深度自地表以下 12米,有效桩长11米,嵌固深度6.5-9.5米,桩身采用C30砼,主筋10根HRB400级16钢筋均匀分布,箍筋¢8@150,加强箍筋¢14@2000,桩间距在电线杆处为1.0米,其它地段为1.2米;冠梁500*800,10根HRB400级18,箍筋、拉钩¢8@200,采用C30砼。
2. 坡道边坡、钢塔变形监测。
四、施工现场的组织管理
由于现场狭窄,大型机械无法进入施工,且施工区域地下、地上均有高压电缆;对砼灌注桩成孔、钢筋笼安装、砼浇注较为困难;经多方面考虑、讨论决定按照以下组织实施:
①在施工前详细了解高压地下电缆走向、埋深以及接电线的辐射范围;
②砼灌注桩放线:为了尽最大可能远离高压地下电缆,桩位紧靠车库剪力墙外皮;
③由于打桩位置狭小无法使用大型机械进行砼桩施工,采用人工机械洛阳铲成孔工艺,机械选用1T卷扬机配三木塔、活底吊桶、双轮手推车等。
④钢筋笼加工:由于钢筋笼11米,钢筋长度9米,需接长2米,计划采用双面焊接工艺,用25吨吊车在地库顶安装,但最北侧4-5根钢筋笼受1#楼主楼位置影响,无法使用吊车,该部位钢筋主筋连接采用直螺纹一级连接,接头钢筋在场外加工后进场;
五、质量控制措施与施工过程
(一)灌注桩放线定位:利用原1#楼主体定位,定出灌注桩中心位置,桩外侧与坡道剪力墙只留30mm空隙。
(二) 机械洛阳铲成孔:
1.采用600mm机械洛阳铲在在桩位中心,利用卷扬机提升及下落进行挖土和垂直运输,闭合抓土,至地面卸土,依次循环成孔,直至达到设计标高。
2 .灌注桩施工部位为前期基坑开挖土钉支护面,在自然地坪以下1.5米和3.0米处有土钉,影响到洛阳铲的施工;有土钉的部位桩径均扩大到700mm,用电焊切除;
(三)钢筋笼制作安装:
1.钢筋原材经现场见证取样试验合格后,方准予加工;
2. 钢筋受力筋按照50mm保护层下料,钢筋主筋搭接采用双面电弧搭接焊,焊头错开50%;个别桩钢筋笼接头采用一级直螺纹连接,接头可在同一个平面上;
3.钢筋保护层用50砂浆垫块每组4块水平对称排列与主筋固定牢固,间距1000mm;
4.钢筋笼吊装:用25T吊车吊装钢筋笼;吊装钢筋笼时要对准孔位,直吊扶稳,缓慢下沉,避免碰撞孔壁,钢筋笼放到位置立即固定;吊车不能直接吊装的钢筋笼,分两段钢筋笼施工,第一段5米,加强箍筋采用¢14@1500,成型后人工放入桩孔,临时固定后,用一级直螺纹机械连接其余主筋钢筋。
(四)砼施工砼采用10-20mm粒径、砼塌落度80-100mm商品砼,灌注前再次校核钢筋笼标高、孔深,检查有无坍孔现象,符合要求后即可开盘灌注。由于砼灌注桩深度较深,混凝土采用溜管用手推车向桩孔内浇筑。灌注开始后应紧凑连续地进行,严禁中途停灌,桩顶以下6米范围采用插入式振动棒进行振捣密实。
从土方开挖到观测变形结束,除开挖当天1个观测点变形最大3mm,(报警值为5毫米/天),其余变形观测为1-2毫米/天,累计最大6mm,远远满足规范30mm要求;对临近建筑、道路沉降观测未发现明显变形。
六、结语
本文从设计与施工的角度对预应力锚索与土钉墙联合支护与加固应用进行了阐述, 并通过本工程的应用分析进行了具体检验:(1) 在基坑的加固工程中应用预应力锚索与土钉墙联合支护与加固是可行的、可靠的;(2) 另外笔者发现土钉设计内力计算时, 锚固浆体受压时的强度提高系数按规范[5] 应取1:1, 但实际工程实践证明, 这往往造成钢筋材料的不必要浪费, 提高系数应该取多少合适尚应通过具体工程的检测数据统计分析后得出, 但应有所提高
参考文献:
[1] 广州地质勘察基础工程公司 华锐大厦基坑支护及加固施工组织方案[R] 广州: 广州地质勘察基础工程公司, 2005.
[2] 叶波, 刘忠臣软弱地层基坑支护工程中复合土钉墙技术的应用[J] 广东公路勘察设计,2003,121(3) :35、38.