论文部分内容阅读
目的探讨ARIMAX模型(autoregressive integrated moving average model-X,ARIMAX)在流感发病趋势预测方面的效果,为提高此模型在传染病发病预测方面的使用提供依据。方法收集乌鲁木齐市(乌市)2013年1月2016年12月的流感样病例(ILI)病例数和大气颗粒物PM2.5及PM10浓度数据,用R软件建立ARIMA及ARIMAX模型,并对2017年前10周ILI病例数做预测。结果乌市2013年1月2016年12月ILI病例总数161 773例,周平均发病数为777例;时序图显示呈冬春季高发的特点。流感周发病数建立ARIMA(1,0,0)模型,赤池信息准则(akaike information criterion,AIC)=2 549.03;以大气颗粒物PM2.5及PM10为影响变量,带入转换函数建立ARIMAX模型,AIC=2 535.51,且模型各参数有统计学意义。使用迭代法对前10期(10周)数据进行预测,预测结果显示仅预测3期(3周)误差最小;两模型预测误差百分比绝对值均值(mean absolute percentage error,MAPE)分别为12.019 74%,12.014 17%,显示两模型均有较好的预测精度。结论 ARIMA模型和ARIMAX模型均能较好预测短时间内ILI病例数的发病趋势,为流感监测和预防控制提供依据。