论文部分内容阅读
为了降低磁电式振动速度传感器的下限测量频率,以实现超低频振动速度测量,提出改进其幅频特性的函数连接型人工神经网络(FLANN)方法。该方法以磁电式振动速度传感器动态试验数据为基础,通过FLANN训练来确定传感器动态补偿网络,以改善它的幅频特性。介绍了原理和FLANN权值调整的算法,给出用FLANN建立的磁电式振动速度传感器动态补偿网络的数学模型。结果表明:这种幅频特性的改进方法具有精度高、鲁棒性好,并能在线修正等优点,在工程测试领域有重要的实用价值。