论文部分内容阅读
针对目前存在的复杂交通场景中车辆分割精度不足的问题,本文提出了一种基于全卷积神经网络对图像中车辆进行分割的方法。在VGG16Net基础上,将全连接层改为卷积层,为获得更精细的边缘分类结果,减少了部分卷积层,并融合浅层和深层特征,同时,为提高交通环境下车辆的分割精度,减少其他类别目标的干扰,将对车辆目标的分割问题改为基于像素的二分类问题,为提高网络的训练速度,采用Adam优化算法对网络进行训练。实验结果表明,与现有的全卷积神经网络分割效果相比,该网络对复杂交通场景下的车辆分割精度明显提高。该研究在智能