论文部分内容阅读
随着三维扫描技术的快速发展,三维形状分析得到了学术界的广泛关注;尤其是深度学习在计算机视觉上取得的显著成功,使得基于多视图的三维形状识别方法成为了目前三维模型识别的主流方式。已有研究表明,三维数据集的数量对于最终的分类精度是一个非常重要的影响条件。然而,由于专业三维扫描设备的限制,三维形状数据难以采集。实际上,现有的公共基准三维数据集的规模远远小于二维数据集,三维形状分析的发展因此受到阻碍。为了解决这一问题,文中主要研究在极小数据样本情况下,三维形状识别问题的优化解策略。受多任务学习的启发,搭建了多