论文部分内容阅读
在科学实验研究中,经常需要实验的观测数据,来寻求两个物理量之间近似的解析函数关系和曲线方程,这就是人们常说的数据拟合或曲线拟合,而且经常要从这些已知数据中总结规律,用以预报未知。本文引入支持向量机作为背景进行曲线拟合。此法能满足在小样本情况研究统计学习规律的理论,通过引入结构风险最小化准则来控制学习机器的容量,从而刻画了过度拟合与泛化能力之间的关系。