论文部分内容阅读
在双曲函数摄动法的基础上,推广双曲函数Lindstedt-Poincaré(L-P)法的适用范围,使之适用于定量分析一类含五次强非线性项的自激振子的同宿分岔和同宿解问题。以双曲函数系为基础推导出适用于高次非线性系统的摄动步骤,对极限环的同宿分岔参数进行摄动展开,给出同宿摄动解奇异项的定义,以消除同宿摄动解奇异项作为确定极限环同宿分岔点的条件,给出能够严格满足同宿条件的同宿轨道摄动解。算例表明,在相平面内该方法的结果与Runge-Kutta法数值周期轨道的逼近结果比较吻合。