论文部分内容阅读
粳稻氮素含量的快速、无损、准确估算,可以及时掌握粳稻的生长状况,对指导粳稻田间管理具有重要意义。为提高粳稻冠层氮素含量的高光谱反演精度,利用沈阳农业大学路南试验基地2018年粳稻3个关键生育期无人机高光谱影像和同步测定的粳稻冠层氮素含量作为数据源,选用从粳稻冠层光谱中提取的高光谱位置变量、面积变量和植被指数变量3种类型20个光谱特征参数与氮素含量进行相关性分析,选出各个生育期内相关性较高的前3个光谱特征参数作为模型输入分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)和思维进化算法优化BP神经网