论文部分内容阅读
现有基于模板匹配的SAR目标识别技术,多通过姿态遍历来构建和存储基础模板库.为降低计算消耗和存储开销,借鉴计算机视觉中视区概念,提出了一种基于非均匀视区划分的模板库精简方法.结合关键特征矢量,基于Gustafson-Kessel(GK)算法对视区作模糊聚类,以识别概率最优控制视区划分策略并提炼原型模板.采用典型舰船目标的SAR仿真图像集,验证了方法在精简模板库、实现高效SAR自动目标识别方面具有可行性.