论文部分内容阅读
支持向量机增量算法的关键是对历史样本集的剪辑,在历史样本集中选择出尽可能少又能表示尽可能多历史样本集信息的子集,再把这个子集与新增训练样本集放在一起进行训练。LivaRalaivola提出保留新增样本最近邻样本来表示历史样本集,而这样的最近邻样本中可能存在冗余样本。根据历史样本与分类平面间的距离可以去除新增样本最近邻样本集中的冗余样本。根据样本平面距离提出了MSPDISVM(minimum sample plane distance incremental support vector machines)