论文部分内容阅读
为解决目标跟踪算法中的某些难点问题,提出以Mean-shift算法为基础,基于高斯混合模型(GMM)前景分割和场景信息的MGSI方法。该方法基于运动预测和前景分割为目标跟踪提供感兴趣区域(ROI),解决了跟踪目标与背景相似情况下目标识别中的误报问题。同时,通过场景信息的预先设定来获取某些先验知识,如屏蔽区域的划分、区域中目标模板更新的频率、遮挡类型的预判等,并根据先验知识来调整跟踪策略,一定程度上解决了遮挡问题。实验证明,基于MGSI方法的目标跟踪系统在一定程度上解决了光照变化、背景干扰、模板更新、