论文部分内容阅读
A new algorithm for the detection of fog/stratus over the ocean from the GMS-5 infrared (IR) channel data is presented. The new algorithm uses a clear-sky radiance composite map (CSCM) to compare the hourly observations of the IR radiance. The feasibility of the simple comparison is justified by the theoretical simulations of the fog effect on the measured radiance using a radiative transfer model. The simulation results show that the presence of fog can be detected provided the visibility is worse than 1 km and the background clear-sky radiances are accurate enough with known uncertainties. For the current study, an accurate CSCM is constructed using a modified spatial and temporal coherence method, which takes advantage of the high temporal resolution of the GMS-5 observations. The new algorithm is applied for the period of 10-12 May 1999, when heavy sea fog formed near the southwest coast of the Korean Peninsula. Comparisons of the fog/stratus index, defined as the difference between the measured and
A new algorithm for the detection of fog / stratus over the ocean from the GMS-5 infrared (IR) channel data is presented. The new algorithm uses a clear-sky radiance composite map (CSCM) to compare the hourly observations of the IR radiance The feasibility of the simple comparison is justified by the theoretical simulations of the fog effect on the measured radiance using a radiative transfer model. The simulation results show that the presence of fog can be detected provided the visibility is worse than 1 km and the background clear the sky radiances are accurate enough with known uncertainties. For the current study, an accurate CSCM is constructed using a modified spatial and temporal coherence method, which takes advantage of the high temporal resolution of the GMS-5 observations. The new algorithm is applied for the period of 10-12 May 1999, when heavy sea fog formed near the southwest coast of the Korean Peninsula. Comparisons of the fog / stratus index, defined as the difference betwee n the measured and