论文部分内容阅读
针对传统"视觉词包(BOW)模型"识别铁路扣件状态时仅利用扣件图像的特征域,忽略其空间域中上下文语义信息的缺点,提出了一种基于上下文语义信息的扣件检测模型。在传统"视觉词包模型"的基础上,引入吉布斯随机场模型对图像中像素的空间相关性进行建模,将图像块在特征域的相似性与空间域的上下文语义约束关系结合,更准确地定义视觉单词;利用潜在狄利克雷分布(LDA)学习扣件图像的主题分布;采用支持向量机(SVM)对扣件进行分类识别。对4类扣件图像的分类实验证明:模型能够有效提高扣件分类精度。