论文部分内容阅读
设G是一个齐次群,X0,X1,X2,,Xp0为G上满足Ho¨rmander秩条件的实左不变向量场且X1,X2,,Xp0是1次齐次的,X0是2次齐次的.在本文中,我们研究如下带有漂移项的算子:L=∑p0i,j=1aijXiXj+a0X0,其中(aij)是一个常数矩阵且满足椭圆条件,a0∈R\{0}.对算子L,通过建立齐型空间上的奇异积分Morrey有界性和关于此向量场的插值不等式,我们在群G上获得了整体Sobolev-Morrey估计.