论文部分内容阅读
运用简化原理,得到了对称随机级数∑n=1^∞Xn(ω)fn(x)若在Lω^2中a.s.收敛或Cesaro有界,则它关于dω^-(x)几乎必然几乎处处收敛的结果,并给出一反例,说明这个结果的逆是不正确的.然后研究了在一般的情况下,当随机系数{Xn}满足“A↓n〉0,EXn=0,aE1/2|Xn|^2≤E|Xn|〈∞”的条件下,该级数收敛的充分必要条件.