论文部分内容阅读
文[1]中称圆锥曲线的焦点所在的对称轴为其主轴,证明了圆锥曲线主轴上点的一种配对性质,本文则阐述圆锥曲线主轴上点的另一种配对性质,并给出次轴(焦点不在的对称轴)上点的一种配对性.定理1设M为圆锥曲线Г的主轴上异于Г顶点及中心(如果存在的话)的任一点,则存在一条垂直于Г的主轴的(与M相关的)直线l M,使得对于Г的过M的任意两弦AB和CD(端点分别为A、B和C、D),三直线AC、BD、l M平行或共点;三直线AD、BC、l M平行或共点.证明Г的离心率为e,焦点到相应准线的距离(焦参数)为p,以一焦点为原点