论文部分内容阅读
针对高光谱图像(HSI)波段之间的冗余性给高光谱图像分类结果产生的不利影响,研究基于多融合多尺度特征的高光谱图像分类方法。将采用于主成分分析降维处理的HSI数据作为多尺度特征多融合残差网络输入,利用多尺度特征多融合残差块提取HSI中的光谱特征和空间特征,并组成若干组光谱-空间特征;采用支持向量机展开分类处理,获取各光谱-空间特征的概率输出结果和权重,建立多特征加权概率融合模型,利用最大后验概率获取高光谱图像分类结果。实验结果表明:光谱-空间多尺度特征融合残差块数量为2+2模式、空间输入尺寸大小为9×