论文部分内容阅读
现有的一卡通数据挖掘方法大多采用统计、聚类、关联规则等浅层机器学习和数据挖掘方法,忽略了消费数据的时序性,缺乏对数据的深度表达。基于深度神经网络,提出了能够对消费数据时序性和关联性进行深度挖掘的Consume2Vec模型,并在此模型的基础上构建消费异常检测模型。通过在大规模一卡通消费数据上进行实验,验证了两个具体Consume2Vec模型的性能,并从不同维度将学生划分为不同群体进行对比分析,发现学生的消费规律和特点。