论文部分内容阅读
现有视频行人重识别方法无法有效地提取视频连续帧之间的时空信息,因此提出一种基于非局部关注和多重特征融合的行人重识别网络来提取全局与局部表征特征和时序信息。首先嵌入非局部关注模块来提取全局特征;然后通过提取网络的低中层特征和局部特征实现多重特征融合,从而获得行人的显著特征;最后将行人特征进行相似性度量并排序,计算出视频行人重识别的精度。在大数据集MARS和DukeMTMC-VideoReID上进行实现,结果显示所提出的模型较现有的多尺度三维卷积(M3D)和学习片段相似度聚合(LCSA)模型的性能均有明