论文部分内容阅读
作为衍生于尺度不变特征变换的特征描述,梯度方向直方图(HOG)在人体检测、手势识别、人脸识别、场景分类等方面得到广泛应用.但HOG的特征维数高,导致维数灾难和大计算量.文中发现HOG特征的高维度源自它需在众多重叠块中计算直方图.虽然重叠块机制对特征的鲁棒性有积极作用,但也导致信息冗余.为去除冗余信息并降低特征维数,从直方图归一化入手,提出非重叠式梯度方向直方图.所提方法的维数降低为传统方法的1/3.在人手和人体检测上的实验表明,该方法不仅物体检测速度得到显著提高,检测准确度也得到改善.