论文部分内容阅读
The problem of robust and reliable control design for linear uncertain impulsive systems with both timevarying norm-bounded parameter uncertainty and actuator failures was studied. The actuators are classified into two groups. One set of actuators susceptible to failures is possible to fail, the other set of actuators robust to failures is assumed never to fail. The outputs of the actuator failures are regarded as zero. The purpose is to design the state feedback controller such that, for all admissible uncertainties as well as actuator failures occurring among a prespecified subset of actuators, the plant remains asymptotically stable. A modified algebraic Riccati equation approach was developed to solve the problem addressed and a robust reliable control law was obtained. An numerical example was also offered to prove the effectiveness of the proposed method.