论文部分内容阅读
聚类是对数据对象的集合无指导地进行分组,聚类算法的好坏直接影响聚类的效果。聚类分析应用广泛,既能作为一个独立的工具来进行数据分析,也可以作为其它算法的预处理步骤。本文从经典的k-Means聚类算法出发,分析了它存在的不足,提出了两种改进的k-Means聚类算法,并从理论上分析了这两种算法可以很好的提高聚类的效果。